

How to Develop Compliant
Medical Device Software

Controlling the Software Development Life
Cycle for Medical Devices

October 2019

Abstract / About the Author:

Over the past two decades, perhaps the most significant change to the medical device industry has
been the incorporation of software into a burgeoning number of medical devices. While this
development trend has resulted in increased functionality and sophistication, including better
control of devices, more power to end-users, and phenomenal gains in diagnostic and usage data
gathering and dissemination, it has also raised a host of issues and questions.

One of Velentium’s Principal System Architect & Engineers, Satyajit Ketkar (Sat), will explain how
companies can adopt these best practices, as well as show in detailed steps the way Velentium
accomplishes these specific tasks internally from the setup, inputs, outputs, testing, wrap-up, and
handoff. Sat has nineteen (19) years of engineering experience with seven (7) of those years within
medical device design. A majority of his career has revolved around electrical, firmware, software
and systems engineering but recently he spent over eighteen (18) months working for a European
Union notified body. This experience allowed him to see product development in a different way,
teaching him how to review and audit products for safety and, quality, performance, and security.

 2

Contents
Is Software a Device? .. 3

Who is Responsible? ... 3

Setup ... 4

Configuration Management.. 4

User Needs .. 5

Risk Analysis .. 6

Vulnerability Assessment .. 6

Requirements .. 6

Architecture and Detailed Design ... 7

Implementation .. 7

Code Reviews, Static Analysis, & Unit Testing .. 7

Integration Testing .. 8

Micro Penetration Testing .. 8

Human Factors Study .. 8

System Testing .. 9

Documentation & Traceability .. 9

Development Wrap-Up ... 9

Maintenance Planning & Future Development .. 10

 3

Introduction

While it's not simple to understand how
software safety, functionality, and control
work in the sphere of medical devices, the
FDA and ISO have provided significant
guidance, which can become the basis of a
development process that meets regulatory
and user requirements. By establishing
requirements, developing a process that fits
them, following that process carefully, and
steadily producing artifacts which document
each step along the way, medical device
manufacturers can ensure that the software
component(s) of their devices will perform to
expectations without causing costly delays or
roadblocks to development, approval, release,
or post-market.

In this series, Sat will provide a high-level
overview of the controls needed to develop
medical device software that meets accepted
standards and merits regulatory approval.

Is Software a Device?

The FDA’s definition of a medical device is
clear. Since 2010, the FDA has been equally
clear that software than in any way interacts
with a medical device or works alone in the
attempt to diagnose, cure, mitigate, treat, or
prevent a disease, is itself a device.

Once the software was classified as a device,
it, in turn, became necessary for software to
comply with 21 CFR Part 820 (even the
sections that do not specifically mention
software). Any medical device that contains
or is composed of software is not compliant
with regulatory requirements unless the

software has undergone risk management,
configuration management, requirements
management, design controls,
verification/validation, and other
requirements of Part 820.

Each of these components of software
development must occur within a quality
management system and include the required
documentation to prove compliance.

Who is Responsible?

When the scope of compliance requirements
surrounding medical device software is
understood, it becomes evident that software
development has a high potential for risk /
benefit impact on patients and end-users. No
wonder, then, that
software
development
controls can make
or break device
approval! Devices
that are otherwise
Part 820 compliant and have useful clinical
data on safety and efficacy will still be denied
market approval if the software development
process and documentation are not
compliant.

Medical device companies often outsource
software development for strategic or
financial reasons. However, it is still the
device manufacturer of record that is
responsible for showing that the software in
their device meets regulatory requirements.
The device manufacturer that outsources
software development, therefore, has two
choices: either lead the software consultant
through a development process that will

SOFTWARE DEVELOPMENT

CONTROLS ARE CRUCIAL!

https://www.fda.gov/medical-devices/classify-your-medical-device/product-medical-device
https://www.fda.gov/medical-devices/classify-your-medical-device/product-medical-device
https://www.fda.gov/medical-devices/digital-health/software-medical-device-samd
https://www.fda.gov/medical-devices/digital-health/software-medical-device-samd
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRsearch.cfm?CFRPart=820

 4

ensure compliance or hire a consultant that is
knowledgeable of requirements and has
developed its own certified process by which
to ensure compliance.

In the medical device industry, it is simply not
enough to hire competent programmers for
device software development. Skilled
programmers are necessary, but they must
also work within a disciplined framework of a
software development process tailored to the
FDA and other regulations.

Setup

Acceptable software development follows a
series of repeatable steps that ensure that all
requirements are met. There is no single
“correct” software development process, but
any good process must incorporate the
requirements of 21 CFR Part 820, IEC 62304,
the CDRH guidance on software validation,
FDA cGMP, ISO 14971, and all FDA guidances
that elaborate on Part 820. The process needs
to be both disciplined and flexible in order to
accommodate both the FDA’s Software Levels
of Concern rating system and IEC 62304’s
Software Safety Classification system.

Here's a sample process consisting of ten
components, only one of which includes
actual coding:

• Configuration Management

• User Needs (End User Assessment)

• Risk Analysis & Security Analysis

(Vulnerability Assessment)

• Requirements

• Architecture & Detailed Design

• Implementation (Coding)

• Code Reviews, Static Analysis & Unit

Testing

• Integration Testing

• Micro Penetration Testing

• Human Factors Study

• System Testing

• Documentation & Traceability

When regulatory requirements are fully
understood, and each component of software
development is carefully implemented, the
resulting medical device software meets
standards of functionality, safety, and
regulatory compliance.

Configuration
Management

First things first: before you even begin
looking at project specifics, you’ve got to
make some decisions (and document them!)
regarding configuration management for the
project.

Configuration management systems ensure
that development proceeds in a controlled,
consistent, traceable, auditable manner. It
includes change requests, defects tracking,
and release management. During medical
device development, it is essential that
released packages are tightly managed and
reproducible for the full lifetime of the device.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-content-premarket-submissions-software-contained-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-content-premarket-submissions-software-contained-medical-devices
https://www.iso.org/obp/ui/#iso:std:iec:62304:ed-1:v1:en

 5

Version control during development
comprises a significant element of
configuration management. Version control
facilitates parallel development by keeping
your team working from the same central
source of truth, making it easier to reconcile
conflicts, and helping to protect the master
project from any bugs or mistakes. However,
version control alone isn’t sufficient to meet
coding standards for medical device software.
Configuration management goes further,
determining version control workflows,
tracking tasks and issues and documenting in
medias res decisions and review findings,
defining and enforcing release states to
prevent “configuration drift,” and so on.

Given that, it should go without saying that
configuration management applies to more
than just code and software resources. It also
includes all of the process records and quality
artifacts produced, including design, risk, and
requirements documents.

Selecting the right combination of CM tools
and defining the CM process for your project
is non-trivial. Fortunately, there are abundant

resources
available,
including the
contact form on
our website. As
consultants
who’ve
contributed to a

wide variety of medical device projects for
well-established industry majors as well as
small start-ups, aimed a numerous
indications, we’d be happy to offer tips,
discuss best practices and lessons learned,
and relate what we’ve seen work well for the
smoothest development experience with the
fewest speedbumps in the approval process.

User Needs

An evaluation of user needs begins with
asking extensive questions about who the
end-user of the device is, what they are
capable of, what their limitations are, and
how their interaction with software design
might affect device functionality or safety.

It is essential to consider whether a given
device could have multiple audiences for
different use cases. For example, the end-user
of an implantable device is the patient, but
audience consideration must include the
physician, any potential caregivers who will
be interacting with the device, the scientists
who will conduct studies on the device, and
so on.

By carefully considering end-user and
audience at the outset of software
development, the overall course for the
software is set. This is also a crucial initial
component in human factors studies, which
should be considered throughout the design
process.

Unless your device consists exclusively of
software, it may well be that user needs have
been investigated and documented at the
system level, and perhaps even broken down
from there to the software level, before the
development team is brought into the project.
In that case, it’s vital that the lead developer
and systems engineer carefully review the
use cases and risk profile together, asking
whether any software-specific user needs
have been missed or haven’t been clearly
described. This review will build directly into
the Requirements phase of the development
lifecycle.

VELENTIUM CAN HELP WITH

DEFINING YOUR CM

PROCESS!

https://www.velentium.com/blog/an-introduction-to-human-factors-engineering-for-medical-devices

 6

Risk Analysis

Risk management is not a single phase;
instead, it begins as Requirements are
defined and runs parallel to the development
process for the remainder of the project. Risk
Analysis and Management requires a multi-
functional team of experts to determine how
the software will affect risk, how software
could mitigate other identified risks in the
device as a whole and hazards created by the
software itself. Outcomes of risk management
must be documented, and each design change
must result in concurrent risk management
review. (See ISO 14971 for guidance on risk
management).

Two major artifacts that you’ll want to begin
working on concurrent with Design activities,
which we’ll cover in the next post, are a
Preliminary Hazard Analysis (PHA) and a
Failure Modes & Effects Analysis (FMEA).
Exploring these two documents in-depth
could become a whole blog series in itself, but
at a high level, generating these for your
software involves critically examining the
software design from both a top-down (PHA)
and a bottom-up (FMEA) perspective. The
PHA begins with a list of potential hazards the
user could experience, classifies those
hazards, and traces each risk to a design
requirement or development activity that
mitigates it. The FMEA begins with a list of
software components, determines how each
could fail, describes the effects of each
possible failure and determines its hazard
classification, and traces each impact of each
failure mode to a requirement or activity that
mitigates it. The difference is subtle but
essential for demonstrating acceptably
thorough risk management.

Vulnerability
Assessment

As the FDA and
ISO define it,
“risk” refers to
the device’s
potential to
harm the
patient. One
form of risk
entails the device or device elements
functioning as intended, failing to function as
expected, or being misunderstood and/or
misused, and that’s what the PHA and DFMEA
risk analyses focus on. Another form of risk is
the device’s potential to cause harm due to
interference from malicious cyber activity.

Over the past two years, the FDA, ISO, and
other medical device regulators have
increasingly clarified their expectations
concerning secure development, as it applies
both to systems and software. Foundational
for fulfilling most of these requirements is a
Vulnerability Assessment, which looks
critically at your intended design to identify
all of the known ways a system with that
design could be compromised or rendered
unavailable through malicious cyber activity.
The output of that assessment may then be
used to define requirements and refine
software design to ensure these
vulnerabilities are mitigated to an acceptable
level.

Requirements

Software requirements derive directly from
User Needs and are scoped and informed by
Risk and Security Analyses. Essentially, this

RISK REFERS TO THE

DEVICE’S POTENTIAL HARD

TO THE PATIENT

https://www.odtmag.com/issues/2019-04-01/view_columns/iso-14971-update-what-changes-can-medical-device-manufacturers-expect/
https://www.odtmag.com/issues/2019-04-01/view_columns/iso-14971-update-what-changes-can-medical-device-manufacturers-expect/
file:///G:/Shared%20drives/Sales%20and%20Marketing/Marketing/Blogs/Software%20Development%20Controls%20(WIP)/to%20https:/www.velentium.com/blog/new-fda-pre-market-submission-guidelines-for-cybersecurity-in-medical-devices-part-i
https://www.velentium.com/blog/root-of-trust-its-all-about-the-vulnerabilities

 7

stage of the process is about knowing the
right questions to ask in order to arrive at the
correct set of requirements. Requirements
gathering involves collating several avenues
of research, including functionality, safety,
usability, and regulations.

Outputs of this phase build into the Design
History File (DHF), which is required as part
of the device approval submission. These
outputs might all be labeled Requirements, or
they can be broken down by area – for
example, you may need to differentiate
between requirements derived from user
needs versus those required to meet
applicable standards.

Architecture and
Detailed Design

There are many different architectural
approaches for designing a software system.
Examples include data-driven, event-based,
rules-based, state-based, service-oriented,
and more. Parsing out which to use for a
given project is beyond the scope of this
series; from a controlled-development
perspective, what’s most important is that
your architecture and detailed design
documents be directly traceable back up to
the requirements and risk documents you
produced during the input phases.

To this end, it’s helpful to design a numbering
system that can maintain continuity between
these documents. If your numbering
convention includes a 1:1 component, it
creates high visibility from designed modules
back to requirements, enabling rapid
confirmation that every requirement is
covered by appropriate software elements,

and every software element has been
analyzed for risk and appropriately mitigated.

Implementation

At this point in the software development
process, actual coding begins. The coding
platform(s) your developers will use was
determined as a part of the requirements and
risk management phases, and functional units
were identified in detailed design. Thanks to
your robust configuration management
system, different functional units can be
worked on in parallel by different teams or
individuals at this point.

It is important to note that there should be
regular risk review meetings during this
phase in order to keep risk management
forefront throughout.

Code Reviews, Static
Analysis, & Unit
Testing

Each part of the code should be tested as it is
written. It is critical – especially in large,
complex systems – to make sure it is possible
to exercise individual units as thoroughly as
possible. This may require creating a
simulated system that can interact with the
code or even a physical test apparatus. Test
needs will be determined both by software
design and risk management and will have
been previously documented as a subsection
of the system Testing Plan (not covered in
this series).

https://www.johner-institute.com/articles/regulatory-affairs/and-more/design-input/

 8

Unit testing is a formal discipline. There
should be documentation that shows the
planned test procedure, date tested,
personnel who performed the test, and

results of the
test. Unit tests
should be
traceable back
to design and
requirements
documents to
prove complete

coverage of the requirements with tested
software. In addition, there should be
documented proof that unit test personnel
were adequately trained and capable of
conducting unit testing.

To learn more about Code Reviews and
software Testing, refer to our blog series on
Static and Dynamic Analysis. We also have a
free white paper available to download, as
well as configuration instructions and a plug-
in kit for our preferred Unit Testing tool,
Parasoft.

Integration Testing
As individual units pass testing, move to test
them as integrated units. You’ve proven that
these units function as expected in isolation;
now, you are systematically integrating and
testing them to verify that they work as
expected in combination with one another.
Throughout this process, your Test Plan will
require that you repeatedly ask “what could
possibly go wrong” with each unit integration
and ensures that you have devised reliable
means to check.

Micro Penetration
Testing

Penetration testing systematically attacks
your system under controlled conditions
mimicking anticipated use cases and
environments to identify cybersecurity
vulnerabilities. Traditionally, this is
performed at the end of the development
lifecycle, just prior to or concurrent with
verification and validation testing. However,
this practice produces a report too late in the
development lifecycle to fix many
vulnerabilities cost-effectively. Although it
does provide the information needed for FDA
and intentional regulations, it does not do it
in a timely fashion optimized for most
software development companies’ business
models.

Velentium has successfully pioneered an
alternative approach, dubbed “micro
penetration testing,” which scopes
cybersecurity test activities to particular
areas of the overall system and performs
them concurrent with implementation. With
this approach, reports generated can be fed
back immediately into designing and
implementing cybersecurity mitigations
before they become expensive to address.

Human Factors Study

It is essential that human factors engineering
be taking place throughout the software
development process. For example, if the
device includes a user interface, show sample
screens to potential users as soon as they are
produced. It is much easier to identify human
factor issues early in the process.

UNIT TESTS SHOULD BE

TRACEABLE BACK TO DESIGN

AND REUIREMENTS DOCS!

https://www.velentium.com/blog/introduction-to-static-analysis
https://www.velentium.com/blog/introduction-to-static-analysis
https://www.velentium.com/blog/configuring-parasoft-for-secure-development-of-medical-devices
https://www.velentium.com/blog/configuring-parasoft-for-secure-development-of-medical-devices
https://www.velentium.com/cyber-security
https://www.velentium.com/cyber-security
https://www.velentium.com/blog/an-introduction-to-human-factors-engineering-for-medical-devices

 9

Human factors testing includes both
qualitative and quantitative testing. In
qualitative testing, users are presented with
the whole process and must use the device
without being guided in each step. What
errors in use are noted? What seemed to
confuse or frustrate the user? Was there
anything that distracted them?

Quantitative testing implements a disciplined
workflow where the users are asked about
every detail of the user-interface—every
screen, button, control, readout, etc. Prior to
this testing, as part of risk management, a
predetermined percentage of positive results
that are required on any unit or set of units
must be identified and documented. Any
aspect of human factors testing that does not
meet that percentage must be reworked and
taken back through the process.

System Testing

Now it is time to test everything as a
complete system. The system test procedure
should be planned ahead of time (as part of
the overall Test Plan, at the requirements and
design phases). There should be clear
delineation, based on your previously-
determined requirements documents, of what
a “complete” software system looks like.

System testing should also include a formal
code review by knowledgeable programmers
who have not been a part of the development
of the code under scrutiny. The discipline of
presenting code to another programmer often
identifies weaknesses in architecture that the
author could not see in the midst of coding.

Documentation &
Traceability

As should be clear by now, even though we’re
presenting it here as if it is a final step,
rigorous documentation following accepted
industry standards must occur throughout
the development process. Though many
developers dislike documentation, in the eyes
of a regulator, if something is not
documented, it did not happen. Controlled
software development requires not only that
the software has safety and functionality, but
that the medical device’s Design History File
(DHF) contains complete records of each
safety and functional element’s design,
implementation, and testing. Furthermore,
DHF artifacts must include traceability so that
reviewers, regulators, and auditors can follow
the granular development of individual
elements from each process phase to the next.

Development Wrap-
Up

As we have seen, a reliable software design
process for medical devices is disciplined and
methodical. While there are significant
creativity and coding skill that goes into the
best software medical devices, it must occur
within a framework that understands that
safety and efficacy are paramount to all other
concerns.

As a final thought, you will note that the
software development process presented
here is relatively restrictive. Changes cannot
be made to any component without affecting
all of the others—a change to a system
requirement requires a new risk analysis, an

 10

updated to the detailed design documents,
new testing of the changed unit as well as the
system as a whole, etc. While such changes
can be made, careful planning at the outset by
an experienced team can minimize such
changes and subsequent delays.

Maintenance
Planning & Future
Development

Developing well-controlled software for
medical devices doesn’t end with market
approval. Once a system is designed and
planned, it must be version-locked as part of
the implementation. Planned releases need to
be gated against the documented design, and
any ideas, feedback, or additional
development work need to be isolated into a
“Phase II” repository for future release. This
disciplined approach ensures that the
software portion of a medical device will not
hold back completion or approval.

While it is possible that responsibility for the
wellbeing of your software in the field may be

transferred from a development team to a
maintenance team, even emergency updates,
like critical bug fixes and vulnerability
patches, must be planned for and deployed in
a controlled manner. Even though you can’t
necessarily anticipate the content of these
updates, you can and must leverage the
know-how from your development team and
your maintenance team to define the process
by which the need for updates will be
determined, classified according to response
type and time, securely developed &
delivered, and verified for efficacy after
deployment.

In other words, initial release can’t be the
final goal of your software design, with
activities taking place afterward being treated
as an afterthought or a task for someone else.
In order to truly mitigated risks and
vulnerabilities of your design, controlled
development must include planning for
controlled maintenance.

